PROINSA 2° Ronda de Control Interlaboratorios 2010

Algunos aspectos críticos en los ensayos de C y N en muestras de suelo

CARBONO OXIDABLE

Método propuesto por Allan Walkley y Amstrong Black en 1934

Una muestra de suelo se somete a la acción oxidante del dicromato de potasio en medio de ácido sulfúrico. Posteriormente se titula el exceso de dicromato

- Oxidación del C orgánico
- II. Valoración del exceso de oxidante

I Oxidación del CO

- Estado de oxidación "inicial" del C orgánico
- Potencial RedOx
- Instrumental
- Temperatura de reacción
- Interferencias químicas
- Característica de la muestra

Estado de oxidación "inicial" del C orgánico

$$2 \operatorname{Cr_2O_7^=} + 3 \operatorname{C^0} + 16 \operatorname{H^+} \rightarrow 4 \operatorname{Cr^{3+}} + 3 \operatorname{CO_2} + 8 \operatorname{H_2O}$$

$$\operatorname{Cr_2O_7^=} + 6 \operatorname{H^0} + 8 \operatorname{H^+} \rightarrow 2 \operatorname{Cr^{3+}} + 7 \operatorname{H_2O}$$

$$\operatorname{RCOOH} \rightarrow \operatorname{RH} + \operatorname{CO_2}$$

Aldrich y col. (1945)

- Relación entre CO₂ desprendido y el dicromato reducido
- Sugirien una compensación de los efectos del H y O
 Se asume que, cada átomo de carbono es oxidado desde un estado de oxidación Cº a un nivel C⁴+, reflejando de esta manera todo el intercambio de electrones en la reacción.

Potencial RedOx

- Concentración de H+
- Concentración del agente oxidante
- Temperatura

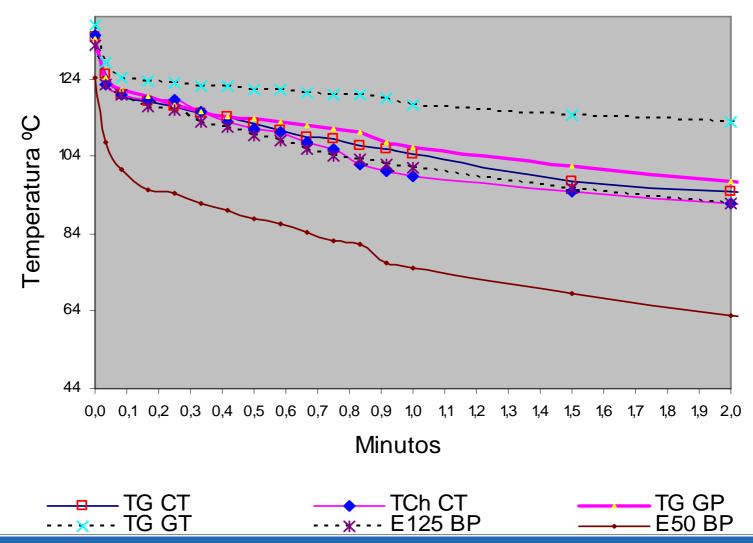
Instrumental

Vasos donde ocurre la reacción de oxidación

Arquitectura

Soporte de los vasos

Diseño


Medio ambiente

- Temperatura
- Corrientes de aire

Variación de la temperatura de la reacción

Interferencia químicas

Cloruros

Relación equivalente: 4 CI = 1 C

Relación %. 1 Cl = 0.08 C

- %C = %C no corregido %Cl/12
- Ag₂SO₄
- Lavado

Nitratos

• 50 ppm = 0,01 % C

Hierro (ferroso)

Se oxida a férrico en el proceso de secado del suelo

Manganeso

Los óxidos presentes en el suelo son poco reactivos

Característica de la muestra

■ Grado de molienda

- Arcillas y material alofánico
- Óxidos de Fe

Carbonatos

Il Valoración

Calidad de los reactivos

- Sal de Mohr
- Dicromato de potasio
- Ácido sulfúrico
- Indicadores

Interferencias

- Ión férrico
- Oxidos de hierro
- Arcilla

Determinación de carbono oxidable por mezcla oxidante fuerte, escala semi-micro

1- Objeto y campo de aplicación

Aplicable a muestras de todo tipo de suelos de uso agropecuario

3- Principio

El método se basa en el procedimiento propuesto por Walkley& Black

4- Reactivos

Dicromato de K 0,167 mol/l (Equivalente a 0,5 N Redox)

Ácido sulfúrico concentrado (IRAM 21301)

Sal de Mohr 0,5 mol/l (Equivalente a 1 N Redox)

Indicadores (3 opciones)

5- Instrumental

Frascos erlenmeyer de 100 o 125 ml

Instituto Nacional de Tecnología Agropecuaria

7- Preparación de la muestra de ensayo

Se porfiriza una porción representativa la muestra, pretratada según la IRAM-SAGPyA 29578, hasta que toda la fracción pase por un tamiz de 0,5 mm

8- Procedimiento

Masa de suelo variable según contenido estimado de MO

- 5 ml ± 0,01 de solución de K₂Cr₂O₇
- 10 ml de ácido sulfúrico Reposo 30 min reposo sobre una superficie aislante
- 15 ml de agua

Reposar hasta que alcance la temperatura ambiente

9- Cálculo

$$COx = \frac{(Vb - Vm) \cdot C \cdot 3}{p}$$

11-Informe

- ✓ C oxidable en mg . g⁻¹ o unidades equivalentes
- ✓ C orgánico CO = Cox x F
- ✓ Materia orgánica MO = CO x 1,724

12- Manejo y gestión de residuos

- Redución total de Cr VI a Cr III
- ✓ Alcalinizar

Instituto Nacional de Tecnología Agropecuaria

Determinación de carbono oxidable por mezcla oxidante fuerte escala micro

Instituto Nacional de Tecnología Agropecuaria

NITRÓGENO

Método propuesto por J. Kjeldahl en 1881

Una muestra de suelo es tratada con ácido sulfúrico concentrado y caliente a fin de convertir el N orgánico en amonio. Posteriormente se los separa por destilación y se lo cuantifica

- Digestión ácida
- II. Destilación del amonio y valoración

I Digestión ácida

Característica de la muestra

- Temperatura de digestión
- Catalizadores

Característica de la muestra

- Grado de molienda
- Arcilla
- Oxidos de Fe
- Altos niveles de MO

Temperatura de digestión

K₂SO₄ vs Na₂SO₄
360 °C a 410 °C

CatalizadoresSe=Hg vs Ti=Cu

I Destilación y valoración de amonio

- DestilaciónEquipo destilación
- Valoración del amonio pH del ácido bórico

Determinación de nitrógeno en suelo por el método Kjeldahl modificado.

Parte 1 - Escala semi-micro

IRAM-SAGPyA 29572 -2

Determinación de nitrógeno en suelo por el método Kjeldahl modificado.

Parte 2 - Escala micro

Muchas gracias!!!

Ing Daniel Carreira dcarreira@cnia.inta.gov.ar Instituto de Suelos CIRN – INTA

